Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines.

نویسندگان

  • Hari B Krishnan
  • Savithiry S Natarajan
  • Ahmed A Mahmoud
  • Randall L Nelson
چکیده

Seed protein concentration of commercial soybean cultivars calculated on a dry weight basis ranges from approximately 37 to 42% depending on genotype and location. A concerted research effort is ongoing to further increase protein concentration. Several soybean plant introductions (PI) are known to contain greater than 50% protein. These PIs are exploited by breeders to incorporate the high-protein trait into commercial North American cultivars. Currently, limited information is available on the biochemical and genetic mechanisms that regulate high-proteins. In this study, we have carried out proteomic and molecular analysis of seed proteins of LG00-13260 and its parental high-protein lines PI 427138 and BARC-6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that the high-protein lines accumulated increased amounts of beta-conglycinin and glycinins, when compared with Williams 82. High-resolution two-dimensional electrophoresis utilizing pH 4-7 and pH 6-11 ampholytes enabled improved resolution of soybean seed proteins. A total of 38 protein spots, representing the different subunits of beta-conglycinin and glycinin, were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. High-protein was correlated with an increase in the accumulation of most of the subunits representing beta-conglycinin and glycinin. Comparisons of the amino acid profiles of high-protein soybean lines revealed that the concentration of sulfur amino acids, a reflection of protein quality, was not influenced by the protein concentration. Southern blot analysis showed the presence of genotypic variation at the DNA level between PI 427138 and BARC-6 for the genes encoding group1 glycinin, beta-conglycinin, Bowman-Birk inhibitor (BBI), and the Kunitz trypsin inhibitor (KTI). LG00-13260 inherited the allelic variants of the parental line PI 427138 for glycinin, beta-conglycinin, and KTI, while BBI was inherited from the parental line BARC-6. The results of our study indicate that high-seed protein concentration is attributed to greater accumulation of specific components of beta-conglycinin and glycinin subunits presumably mediated by preferential expression of these genes during seed development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

beta-Conglycinin and glycinin in high-protein soybean seeds.

The agronomic performance and storage proteins of high seed protein lines of soybeans [Glycine max L. (Merr.)] were investigated to determine if the two major storage proteins, beta-conglycinin and glycinin, contribute to the increased protein content of high seed protein lines. Subunits of these two major storage proteins were estimated by scanning SDS-PAGE gels by scanning densitometry. The r...

متن کامل

Assessment of seed storage protein composition of six Iranian adopted soybean cultivars [Glycine max (L.) Merrill.]

Seed protein quality is an important topic in the production of soybean. The quality of soybean proteins is limited by anti-nutrient proteins and low levels of essential sulfur amino acids. In this study, protein content and solubility of six cultivars were evaluated and seed storage proteins were analyzed using SDS-PAGE and scanning densitometry. The results showed that seed storage protein ba...

متن کامل

Improvement of the Nutritional Value of Soybean [Glycine max (L) Merr.] Seed with Alteration in Protein Subunits of Glycinin (11S Globulin) and β-conglycinin (7S Globulin)

Protein quality in soybean seeds is strongly influenced by nutritional conditions. Glycinin (11S globulin) and β-conglycinin (7S globulin) are the 2 main proteins in soybean seeds. Protein quality of glycinin (11S) is higher than that of β-conglycinin (7S), due to the presence of higher amounts of s-containing amino acids (methionine and cysteine) in glycinin than β-conglycinin. Of the amino ac...

متن کامل

Cosuppression of the alpha subunits of beta-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies.

The expression of the alpha and alpha' subunits of beta-conglycinin was suppressed by sequence-mediated gene silencing in transgenic soybean seed. The resulting seeds had similar total oil and protein content and ratio compared with the parent line. The decrease in beta-conglycinin protein was apparently compensated by an increased accumulation of glycinin. In addition, proglycinin, the precurs...

متن کامل

Proteome rebalancing in soybean seeds can be exploited to enhance foreign protein accumulation.

Seeds possess a high intrinsic capacity for protein production that makes them a desirable bioreactor platform for the manufacture of transgenic products. One strategy to enhance foreign protein production involves exchanging the capacity to produce intrinsic proteins for the capacity to produce a high level of foreign proteins. Suppression of the alpha/alpha' subunit of beta-conglycinin storag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 55 5  شماره 

صفحات  -

تاریخ انتشار 2007